explicitClick to confirm you are 18+

arPosMar 8, 2018, 10:47:11 PM
thumb_up6thumb_downmore_vert

Gas lighting (1783)[edit]

In 1783, Maastricht-born chemist Jan Pieter Minckelers used coal gas for lighting and developed the first form of gas lighting.

First capitalist nation-state (foundations of modern capitalism) (17th century)

Economic historians consider the Netherlands as the first predominantly capitalist nation.[26][174][175][176][177][178][179][180][181][182][183] The development of European capitalism began among the city-states of Italy, Flanders, and the Baltic. It spread to the European interstate system, eventually resulting in the world's first capitalist nation-state, the Dutch Republic of the seventeenth century.[184] The Dutch were the first to develop capitalism on a nationwide scale (as opposed to earlier city states). They also played a pioneering role in the emergence of the capitalist world-system.[185] Simon Schama aptly titled his work The Embarrassment of Riches, capturing the astonishing novelty and success of the commercial revolution in the Dutch Republic.

World-systems theorists (including Immanuel Wallerstein and Giovanni Arrighi) often consider the economic primacy of the Dutch Republic in the 17th century as the first capitalist hegemony[186][187][188][189][190][191][192][193] in world history (followed by hegemonies of the United Kingdom in the 19th century and the United States in the 20th century).

First modern economic miracle (1585–1714)[edit]

The Dutch economic transition from a possession of the Holy Roman Empire in the 1590s to the foremost maritime and economic power in the world has been called the “Dutch Miracle” (or “Dutch Tiger”) by many economic historians, including K. W. Swart.[194] Until the 18th century, the economy of the Dutch Republic was the most advanced and sophisticated ever seen in history.[195] During their Golden Age, the provinces of the Northern Netherlands rose from almost total obscurity as the poor cousins of the industrious and heavily urbanised southern regions (Southern Netherlands) to become the world leader in economic success.[196][197][198][199] The Netherlands introduced many financial innovations that made it a major economic force – and Amsterdam became the world center for international finance. Its manufacturing towns grew so quickly that by the middle of the century the Netherlands had supplanted France as the leading industrial nation of the world.

Dutch East India Company[edit]

The Dutch East India Company (Verenigde Oostindische Compagnie, or VOC), founded in 1602, was the world’s first multinational, joint-stock,[141] limited liability corporation[142][143][144][145][146][147][148][149] – as well as its first government-backed trading cartel.[150][151][152][153] It was the first company to issue shares of stock and what evolved into corporate bonds. The VOC was also the first company to actually issue stocks and bonds through a stock exchange.[154][155][156][157] In 1602, the VOC issued shares that were made tradable on the Amsterdam Stock Exchange. This invention enhanced the ability of joint-stock companies to attract capital from investors as they could now easily dispose their shares. The company was known throughout the world as the VOC thanks to its logo featuring those initials, which became the first global corporate brand. The company's monogram also became the first global logo.[158]

First megacorporation (1602)[edit]

A coin (duit) minted in 1744 by the VOC.

The Dutch East India Company was arguably the first megacorporation, possessing quasi-governmental powers, including the ability to wage war, imprison and execute convicts, negotiate treaties, coin money and establish colonies. Many economic and political historians consider the Dutch East India Company as the most valuable, powerful and influential corporation in the world history.

The VOC existed for almost 200 years from its founding in 1602, when the States-General of the Netherlands granted it a 21-year monopoly over Dutch operations in Asia until its demise in 1796. During those two centuries (between 1602 and 1796), the VOC sent almost a million Europeans to work in the Asia trade on 4,785 ships, and netted for their efforts more than 2.5 million tons of Asian trade goods. By contrast, the rest of Europe combined sent only 882,412 people from 1500 to 1795, and the fleet of the English (later British) East India Company, the VOC's nearest competitor, was a distant second to its total traffic with 2,690 ships and a mere one-fifth the tonnage of goods carried by the VOC. The VOC enjoyed huge profits from its spice monopoly through most of the 17th century.[159]

Dutch auction (17th century)[edit]

A Dutch auction is also known as an open descending price auction. Named after the famous auctions of Dutch tulip bulbs in the 17th century, it is based on a pricing system devised by Nobel Prize–winning economist William Vickrey. In the traditional Dutch auction, the auctioneer begins with a high asking price which is lowered until some participant is willing to accept the auctioneer's price. The winning participant pays the last announced price. Dutch auction is also sometimes used to describe online auctions where several identical goods are sold simultaneously to an equal number of high bidders. In addition to cut flower sales in the Netherlands, Dutch auctions have also been used for perishable commodities such as fish and tobacco.

First modern art market (17th century)[edit]

The Dutch Republic was the birthplace of the first modern art market (open art market or free art market). The seventeenth-century Dutch were the pioneering arts marketers, successfully combining art and commerce together as we would recognise it today.[160] Until the 17th century, commissioning works of art was largely the preserve of the church, monarchs and aristocrats. The emergence of a powerful and wealthy middle class in Holland, though, produced a radical change in patronage as the new Dutch bourgeoisie bought art. For the first time, the direction of art was shaped by relatively broadly-based demand rather than religious dogma or royal whim, and the result was a market which today's dealers and collectors would find familiar. With the creation of the first large-scale open art market, prosperous Dutch merchants, artisans, and civil servants bought paintings and prints in unprecedented numbers. Foreign visitors were astonished that even modest members of Dutch society such as farmers and bakers owned multiple works of art.

Concept of corporate governance (17th century)[edit]

The seventeenth-century Dutch businessmen were the pioneers in laying the basis for modern corporate governance. Isaac Le Maire, an Amsterdam businessman and a sizeable shareholder of the VOC, became the first recorded investor to actually consider the corporate governance's problems. In 1609, he complained of the VOC's shoddy corporate governance. On January 24, 1609, Le Maire filed a petition against the VOC, marking the first recorded expression of shareholder activism. In what is the first recorded corporate governance dispute, Le Maire formally charged that the directors (the VOC's board of directors – the Heeren XVII) sought to “retain another’s money for longer or use it ways other than the latter wishes” and petitioned for the liquidation of the VOC in accordance with standard business practice.[161][162][163]

The first shareholder revolt happened in 1622, among Dutch East India Company (VOC) investors who complained that the company account books had been “smeared with bacon” so that they might be “eaten by dogs.” The investors demanded a “reeckeninge,” a proper financial audit.[164] The 1622 campaign by the shareholders of the VOC is a testimony of genesis of CSR (Corporate Social Responsibility) in which shareholders staged protests by distributing pamphlets and complaining about management self enrichment and secrecy.[165]

Modern concept of foreign direct investment (17th century)[edit]

The construction in 1619 of a train-oil factory on Smeerenburg in the Spitsbergen islands by the Noordsche Compagnie, and the acquisition in 1626 of Manhattan Island by the Dutch West India Company are referred to as the earliest cases of outward foreign direct investment (FDI) in Dutch and world history. Throughout the seventeenth century, the Dutch East India Company (VOC) and the Dutch West India Company (GWIC/WIC) also began to create trading settlements around the globe. Their trading activities generated enormous wealth, making the Dutch Republic one of the most prosperous countries of that time. The Dutch Republic's extensive arms trade occasioned an episode in the industrial development of early-modern Sweden, where arms merchants like Louis de Geer and the Trip brothers, invested in iron mines and iron works, another early example of outward foreign direct investment.

First modern market-oriented economy (17th century)[edit]

It was in the Dutch Republic that some important industries (economic sectors) such as shipbuilding, shipping, printing and publishing were developed on a large-scale export-driven model for the first time in history. The ship building district of Zaan, near Amsterdam, became the first industrialized area in the world,[166] with around 900 industrial windmills at the end of the 17th century, but there were industrialized towns and cities on a smaller scale also. Other industries that saw significant growth were papermaking, sugar refining, printing, the linen industry (with spin-offs in vegetable oils, like flax and rape oil), and industries that used the cheap peat fuel, like brewing and ceramics (brickworks, pottery and clay-pipe making).

The Dutch shipbuilding industry was of modern dimensions, inclining strongly toward standardised, repetitive methods. It was highly mechanized and used many labor-saving devices-wind-powered sawmills, powered feeders for saw, block and tackles, great cranes to move heavy timbers-all of which increased productivity.[167] Dutch shipbuilding benefited from various design innovations which increased carrying capacity and cut costs

Dynamic macroeconomic model (1936)[edit]

Dutch economist Jan Tinbergen developed the first national comprehensive macroeconomic model, which he first built for the Netherlands and after World War II later applied to the United States and the United Kingdom.

Fairtrade certification (1988)[edit]

The concept of fair trade has been around for over 40 years, but a formal labelling scheme emerged only in the 1980s. At the initiative of Mexican coffee farmers, the world's first Fairtrade labeling organisation, Stichting Max Havelaar, was launched in the Netherlands on 15 November 1988 by Nico Roozen, Frans van der Hoff and Dutch ecumenical development agency Solidaridad. It was branded "Max Havelaar" after a fictional Dutch character who opposed the exploitation of coffee pickers in Dutch colonies.

Concept of bourse ( 13th century)[edit]

An exchange, or bourse, is a highly organized market where (especially) tradable securities, commodities, foreign exchange, futures, and options contracts are sold and bought. The term bourse is derived from the 13th-century inn named Huis ter Beurze in Bruges, Low Countries, where traders and foreign merchants from across Europe conducted business in the late medieval period.[202] The building, which was established by Robert van der Buerze as a hostelry, had operated from 1285. Its managers became famous for offering judicious financial advice to the traders and merchants who frequented the building. This service became known as the "Beurze Purse" which is the basis of bourse, meaning an organised place of exchange.

Foundations of stock market (1602

The seventeenth-century Dutch merchants laid the foundations for modern stock market that now influences greatly the global economy. It was in the Dutch Republic that a fully-fledged stock market was established and developed for the first time in history.[207] The Dutch merchants were also the pioneers in developing the basic techniques of stock trading. Although bond sales by municipalities and states can be traced to the thirteenth century, the origin of modern stock exchanges that specialize in creating and sustaining secondary markets in corporate securities goes back to the formation of the Dutch East India Company in the year 1602.[208][209][210][211] Dutch investors were the first to trade their shares at a regular stock exchange.[212] The Amsterdam Stock Exchange is considered the oldest in the world. It was established in 1602 by the Dutch East India Company for dealings in its printed stocks and bonds. Here, the Dutch also pioneered stock futures, stock options, short selling, debt-equity swaps, merchant banking, bonds, unit trusts and other speculative instruments. Unlike the competing companies, the VOC allowed anyone (including housemaids) to purchase stock in the trading at the fully operational Amsterdam Bourse. The practice of naked short selling was also invented in the Dutch Republic. In 1609, Isaac Le Maire, an Amsterdam merchant and a sizeable shareholder of the Dutch East India Company (VOC), became the first recorded short seller in history. The first recorded ban on short selling also took place in the Dutch Republic in the same year. In the early 17th century, Dutch merchants invented the common stock – that of the VOC. Also, the Dutch experienced the first recorded stock market crash in history, the Tulip Mania of 1636–1637. Since 1602, stock market trading has come a long way. But basically, the concept and principle of stock market trading is still upheld and is still being implemented up to

First fully functioning (fully-fledged) financial market (17th century)[edit]

The Dutch Republic (Amsterdam in particular) was the birthplace of the world's first fully functioning financial market, with the birth of a fully fledged capital market. Capital markets for debt and equity shares are used to raise long-term funds. New stocks and bonds are sold in primary markets (including initial public offerings) and secondary markets (including stock exchanges). While the Italian city-states produced the first transferable municipal bonds, they didn't develop the other ingredient necessary to produce a fully fledged capital market: corporate shareholders. The Dutch East India Company (VOC) became the first company to offer shares of stock to the general public. Dutch investors were the first to trade their shares at a regular stock exchange. In 1602 the Dutch East India Company (VOC) established an exchange in Amsterdam where the VOC stocks and bonds could be traded in a secondary market.[148][215] The buying and selling of the VOC's securities (including shares and bonds) became the basis of the first official stock market. The Dutch were also the first to use a fully-fledged capital market (including bond market and stock market) to finance companies (such as the VOC and the WIC). It was in seventeenth-century Amsterdam that the global securities market began to take on its modern form.

Foundations of corporate finance (17th century)[edit]

What is now known as corporate finance has its modern roots in financial management policies of the Dutch East India Company (VOC) in the 17th century and some basic aspects of modern corporate finance began to appear in financial activities of Dutch businessmen in the early 17th century.

Initial public offering (1602)[edit]

The earliest form of a company which issued public shares was the publicani during the Roman Republic. In 1602, the Dutch East India Company (Vereenigde Oost-Indische Compagnie or VOC) became the first modern company to issue shares to the public, thus launching the first modern initial public offering (IPO). The VOC held the first public offering of shares in history shortly after its founding.[216][217][218] With this first recorded initial public offering (IPO), the VOC brought in 6,424,588 guilders and the company subsequently grew to become the first true transnational corporation in the world.

Institutional foundations of investment banking (17th century)[edit]

The Dutch were the pioneers in laying the basis for investment banking, allowing the risk of loans to be distributed among thousands of investors in the early seventeenth century.[219]

Institutional foundations of central banking (first central bank) (1609)[edit]

A painting by Pieter Saenredam of the old town hall in Amsterdam where the Wisselbank was founded in 1609. The Amsterdamsche Wisselbank (literally meaning “Amsterdam Exchange Bank”), the precursor to, if not the first modern central bank. The Wisselbank's innovations helped lay the foundations for the central banking system that now plays a vital role in the world's economy.

Prior to the 17th century most money was commodity money, typically gold or silver. However, promises to pay were widely circulated and accepted as value at least five hundred years earlier in both Europe and Asia. The Song Dynasty was the first to issue generally circulating paper currency, while the Yuan Dynasty was the first to use notes as the predominant circulating medium. In 1455, in an effort to control inflation, the succeeding Ming Dynasty ended the use of paper money and closed much of Chinese trade. The medieval European Knights Templar ran an early prototype of a central banking system, as their promises to pay were widely respected, and many regard their activities as having laid the basis for the modern banking system. As the first public bank to "offer accounts not directly convertible to coin", the Bank of Amsterdam (Amsterdamsche Wisselbank or literally Amsterdam Exchange Bank) established in 1609 is considered to be the precursor to modern central banks, if not the first true central bank.[220][221][222][223][224][225][226][227] The Wisselbank's innovations helped lay the foundations for the birth and development of modern central banking systems.[228][229][230][231][232][233][234] There were earlier banks, especially in the Italian city-states, but the Wisselbank, with its public backing, provided for a scale of operations and stability hitherto unmatched. Along with a number of subsidiary local banks, it performed many of modern-day central banking functions.[235] The model of the Wisselbank as a state bank was adapted throughout Europe, including the Bank of Sweden (1668) and the Bank of England (1694).[236] It occupied a central position in the financial world of its day, providing an effective, efficient and trusted system for national and international payments. The establishment of the Wisselbank led to the introduction of the concept of bank money – the bank guilder. Lucien Gillard (2004) calls it the European guilder (le florin européen),[237] and Adam Smith devotes many pages to explaining how the bank guilder works (Smith 1776: 446–55). Considered by many experts to be the first internationally dominant reserve currency of modern times, the Dutch guilder was the dominant currency during the 17th and 18th centuries. It was just replaced by British pound sterling in the 19th century and the US dollar took the lead just after World War Two and has held it until this day.[238][239][240] (as of 2017 SDR basket)

Short selling (1609)[edit]

Financial innovation in Amsterdam took many forms. In 1609, investors led by Isaac Le Maire formed history's first bear syndicate to engage in short selling, but their coordinated trading had only a modest impact in driving down share prices, which tended to be robust throughout the 17th century.

Concept of dividend policy (1610)[edit]

In the first decades of the 17th century, the VOC was the first recorded company ever to pay regular dividends. To encourage investors to buy shares, a promise of an annual payment (called a dividend) was made. An investor would receive dividends instead interest and the investment was permanent in the form of shares in the company. Between 1600 and 1800 the Dutch East India Company (VOC) paid annual dividends worth around 18 percent of the value of the shares.

First European banknote (1661)[edit]

In 1656, King Charles X Gustav of Sweden signed two charters creating two private banks under the directorship of Johan Palmstruch (though before having been ennobled he was called Johan Wittmacher or Hans Wittmacher), a Riga-born merchant of Dutch origin. Palmstruch modeled the banks on those of Amsterdam where he had become a burgher. The first real European banknote was issued in 1661 by the Stockholms Banco of Johan Palmstruch, a private bank under state charter (precursor to the Sveriges Riksbank, the central bank of Sweden).

First book ever on stock trading (1688)[edit]

Joseph de la Vega, also known as Joseph Penso de la Vega, was an Amsterdam trader from a Spanish Jewish family and a prolific writer as well as a successful businessman. His 1688 book Confusion de Confusiones (Confusion of Confusions) explained the workings of the city's stock market. It was the earliest book about stock trading, taking the form of a dialogue between a merchant, a shareholder and a philosopher. The book described a market that was sophisticated but also prone to excesses, and de la Vega offered advice to his readers on such topics as the unpredictability of market shifts and the importance of patience in investment. The book has been described as the first precursor of modern behavioural finance, with its descriptions of investor decision-making still reflected in the way some investors operate today, and in 2001 was still rated by the Financial Times as one of the ten best investment book ever written.[241]

Concept of technical analysis (1688)[edit]

The principles of technical analysis are derived from hundreds of years of financial market data. These principles in a raw form have been studied since the seventeenth century.[242] Some aspects of technical analysis began to appear in Joseph de la Vega's accounts of the Dutch markets in the late 17th century. In Asia, technical analysis is said to be a method developed by Homma Munehisa during the early 18th century which evolved into the use of candlestick techniques, and is today a technical analysis charting tool.[243][244]

Concept of behavioral finance (1688)[edit]

Josseph de la Vega was in 1688 the first person to give an account of irrational behaviour in financial markets. His 1688 book Confusion of Confusions, has been described as the first precursor of modern behavioural finance, with its descriptions of investor decision-making still reflected in the way some investors operate today.

First modern model of a financial centre (17th century

By the first decades of the 18th century, Amsterdam had become the world’s leading financial centre for more than a century, having developed a sophisticated financial system with central banking, fully-fledged capital markets, certain kinds of financial derivatives, and publicly traded multinational corporations. Amsterdam was the first modern model of an international (global) financial centre that now operated in several countries around the world.

Foundations of modern financial system (17th century)[edit]

In the early 17th century, the Dutch revolutionized domestic and international finance by inventing common stock – that of the Dutch East India Company and founding a proto-central bank, the Wisselbank or Bank of Amsterdam. In 1609, the Dutch had already had a government bond market for some decades. Shortly thereafter, the Dutch Republic had in place, in one form or another, all of the key components of a modern financial system: formalized public credit, stable money, elements of a banking system, a central bank of sorts and securities markets. The Dutch Republic went on to become that century's leading economy.[246]

Concept of investment fund (1774)[edit]

The first investment fund has its roots back in 1774. A Dutch merchant named Adriaan van Ketwich formed a trust named Eendragt Maakt Magt. The name of Ketwich's fund translates to "unity creates strength". In response to the financial crisis of 1772–1773, Ketwich’s aim was to provide small investors an opportunity to diversify (Rouwenhorst & Goetzman, 2005). This investment scheme can be seen as the first near-mutual fund. In the years following, near-mutual funds evolved and become more diverse and complex.

Mutual fund (1774)[edit]

The first mutual funds were established in 1774 in the Netherlands. Amsterdam-based businessman Abraham van Ketwich (a.k.a. Adriaan van Ketwich) is often credited as the originator of the world's first mutual fund.[247] The first mutual fund outside the Netherlands was the Foreign & Colonial Government Trust, which was established in London in 1868.

Doctrine of the Freedom of the Seas (foundations of the Law of the Sea/UNCLOS) (1609)[edit]

In 1609, Hugo Grotius, the Dutch jurist who is generally known as the father of modern international law, published his book Mare Liberum (The Free Sea), which first formulated the notion of freedom of the seas. He developed this idea into a legal principle.[270] It is said to be 'the first, and classic, exposition of the doctrine of the freedom of the seas' which has been the essence and backbone of the modern law of the sea.[271][272] It is generally assumed that Grotius first propounded the principle of freedom of the seas, although all countries in the Indian Ocean and other Asian seas accepted the right of unobstructed navigation long before Grotius wrote his De Jure Praedae (On the Law of Spoils) in the year of 1604. His work sparked a debate in the seventeenth century over whether states could exclude the vessels of other states from certain waters. Grotius won this debate, as freedom of the seas became a universally recognized legal principle, associated with concepts such as communication, trade and peace. Grotius's notion of the freedom of the seas would persist until the mid-twentieth century, and it continues to be applied even to this day for much of the high seas, though the application of the concept and the scope of its reach is changing.

Secularized natural law (foundations of modern international law) (1625)[edit]

The publication of De jure belli ac pacis (On the Laws of War and Peace) by Hugo Grotius in 1625 had marked the emergence of international law as an 'autonomous legal science'.[273][274][275] Grotius’s On the Law of War and Peace, published in 1625, is best known as the first systematic treatise on international law, but to thinkers of the seventeenth and eighteenth centuries, it seemed to set a new agenda in moral and political philosophy across the board. Grotius developed pivotal treatises on freedom of the seas, the law of spoils, the laws of war and peace and he created an autonomous place for international law as its own discipline. Jean Barbeyrac’s Historical and Critical Account of the Science of Morality, attached to his translation of Samuel von Pufendorf’s Law of Nature and Nations in 1706, praised Grotius as “the first who broke the ice” of “the Scholastic Philosophy; which [had] spread itself all over Europe” (1749: 67, 66).[276] Grotius' truly distinctive contribution to jurisprudence and philosophy of law (public international law or law of nations in particular) was that he secularized natural law.[277][278][279][280][281][282][283] Grotius had divorced natural law from theology and religion by grounding it solely in the social nature and natural reason of man.[271][272] When Grotius, considered by many to be the founder of modern natural law theory (or secular natural law), said that natural law would retain its validity 'even if God did not exist' (etiamsi daremus non esse Deum), he was making a clear break with the classical tradition of natural law.[284][285][286][287] Adam Smith, in lectures delivered in 1762 on the subject of moral philosophy and the law of nations, said that: “Jurisprudence is that science which inquires into the general principles which ought to be the foundation of laws of all nations. Grotius seems to have been the first who attempted to give the world anything like a regular system of natural jurisprudence, and his treatise, 'On the Laws of War and Peace, ' with all its imperfections, is perhaps at this day the most complete work on this subject.”[288]

Grotian conception of international society (1625)[edit]

The Grotian conception of international society became the most distinctive characteristic of the internationalist (or rationalist) tradition in international relations. This is why it is also called the Grotian tradition. According to it international politics takes place within international society in which states are bound not only by rules of prudence or expediency but also of morality and law. Grotius was arguably not the first to formulate such a doctrine. However, he was first to clearly define the idea of one society of states, governed not by force or warfare but by laws and mutual agreement to enforce those laws. As many international law scholars noted, the spirit of the Peace of Westphalia (1648) was preceded with the thoughts and ideas of Grotius. Thomas Franck observed: ‘Since the Reformation, the Peace of Westphalia, and the writings of Hugo Grotius, there has been an explicit assumption that the international system is an association of sovereign states.’[289] As Hedley Bull declared: ‘The idea of international society which Grotius propounded was given concrete expression in the Peace of Westphalia’, affirming that ‘Grotius must be considered the intellectual father of this first general peace settlement of modern times’.[290]

https://www.youtube.com/watch?v=ppoKyDh4VK8

Cannon shot rule (1702)[edit]

By the end of the seventeenth century, support was growing for some limitation to the seaward extent of territorial waters. What emerged was the so-called "cannon shot rule", which acknowledged the idea that property rights could be acquired by physical occupation and in practice to the effective range of shore-based cannon: about three nautical miles. The rule was long associated with Cornelis van Bijnkershoek, a Dutch jurist who, especially in his De Dominio Maris Dissertatio (1702), advocated a middle ground between the extremes of Mare Liberum and John Selden's Mare Clausum, accepting both the freedom of states to navigate and exploit the resources of the high seas and a right of coastal states to assert wide-ranging rights in a limited marine territory.

Permanent Court of Arbitration (1899)[edit]

The Permanent Court of Arbitration (PCA) is an international organization based in The Hague in the Netherlands. The court was established in 1899 as one of the acts of the first Hague Peace Conference, which makes it the oldest global institution for international dispute resolution.[291] Its creation is set out under Articles 20 to 29 of the 1899 Hague Convention for the pacific settlement of international disputes, which was a result of the first Hague Peace Conference. The most concrete achievement of the Conference was the establishment of the PCA as the first institutionalized global mechanism for the settlement of disputes between states. The PCA encourages the resolution of disputes that involve states, state entities, intergovernmental organizations, and private parties by assisting in the establishment of arbitration tribunals and facilitating their work. The court offers a wide range of services for the resolution of international disputes which the parties concerned have expressly agreed to submit for resolution under its auspices. Dutch-Jew legal scholar Tobias Asser's role in the creation of the PCA at the first Hague Peace Conference (1899) earned him the Nobel Peace Prize in 1911.

International Opium Convention (1912)[edit]

The International Opium Convention, sometimes referred to as the Hague Convention of 1912, signed on 23 January 1912 at The Hague, was the first international drug control treaty and is the core of the international drug control system. The adoption of the Convention was a turning point in multilateralism, based on the recognition of the transnational nature of the drug problem and the principle of shared responsibility.[292]

Marriage equality (legalization of same-sex marriage) (2001)[edit]

Denmark was the first state to recognize a legal relationship for same-sex couples, establishing "registered partnerships" very much like marriage in 1989. In 2001, the Netherlands became the first nation in the world to grant same-sex marriages. The first laws enabling same-sex marriage in modern times were enacted during the first decade of the 21st century. As of 29 March 2014, sixteen countries (Argentina, Belgium, Brazil, Canada, Denmark,[nb 1] France, Iceland, Netherlands,[nb 2] New Zealand,[nb 3] Norway, Portugal, Spain, South Africa, Sweden, United Kingdom,[nb 4] Uruguay) and several sub-national jurisdictions (parts of Mexico and the United States) allow same-sex couples to marry. Polls in various countries show that there is rising support for legally recognizing same-sex marriage across race, ethnicity, age, religion, political affiliation, and socioeconomic status.

Cartography and geography[edit]

Method for determining longitude using a clock (1530)[edit]

The Dutch-Frisian geographer Gemma Frisius was the first to propose the use of a chronometer to determine longitude in 1530. In his book On the Principles of Astronomy and Cosmography (1530), Frisius explains for the first time how to use a very accurate clock to determine longitude.[66] The problem was that in Frisius’ day, no clock was sufficiently precise to use his method. In 1761, the British clock-builder John Harrison constructed the first marine chronometer, which allowed the method developed by Frisius.

Triangulation and the modern systematic use of triangulation networks (1533 & 1615)'[edit]

Triangulation had first emerged as a map-making method in the mid sixteenth century when the Dutch-Frisian mathematician Gemma Frisius set out the idea in his Libellus de locorum describendorum ratione (Booklet concerning a way of describing places).[67][68][69][70][71][72] Dutch cartographer Jacob van Deventer was among the first to make systematic use of triangulation, the technique whose theory was described by Gemma Frisius in his 1533 book.

The modern systematic use of triangulation networks stems from the work of the Dutch mathematician Willebrord Snell (born Willebrord Snel van Royen), who in 1615 surveyed the distance from Alkmaar to Bergen op Zoom, approximately 70 miles (110 kilometres), using a chain of quadrangles containing 33 triangles in all[73][74][75] – a feat celebrated in the title of his book Eratosthenes Batavus (The Dutch Eratosthenes), published in 1617.

Mercator projection (1569)[edit]

The 1569 Mercator map of the world (Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate Accommodata).

The Mercator projection is a cylindrical map projection presented by the Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for nautical purposes because of its ability to represent lines of constant course, known as rhumb lines or loxodromes, as straight segments which conserve the angles with the meridians.[76]

First modern world atlas (1570)[edit]

World map Theatrum Orbis Terrarum by Ortelius (1570). The period of late 16th and much of the 17th century (approximately 1570–1672) has been called the "Golden Age of Dutch (Netherlandish) Cartography". The cartographers/publishers of Antwerp and Amsterdam, especially, were leaders in supplying maps and charts for all of Western Europe.

Flemish geographer and cartographer Abraham Ortelius generally recognized as the creator of the world's first modern atlas, the Theatrum Orbis Terrarum (Theatre of the World). Ortelius's Theatrum Orbis Terrarum is considered the first true atlas in the modern sense: a collection of uniform map sheets and sustaining text bound to form a book for which copper printing plates were specifically engraved. It is sometimes referred to as the summary of sixteenth-century cartography.[77][78][79][80]

First printed atlas of nautical charts (1584)[edit]

Portugal by Waghenaer (1584). The publication of Waghenaer's De Spieghel der Zeevaerdt (1584) is widely considered as one of the most important developments in the history of nautical cartography.

The first printed atlas of nautical charts (De Spieghel der Zeevaerdt or The Mirror of Navigation / The Mariner's Mirror) was produced by Lucas Janszoon Waghenaer in Leiden. This atlas was the first attempt to systematically codify nautical maps. This chart-book combined an atlas of nautical charts and sailing directions with instructions for navigation on the western and north-western coastal waters of Europe. It was the first of its kind in the history of maritime cartography, and was an immediate success. The English translation of Waghenaer's work was published in 1588 and became so popular that any volume of sea charts soon became known as a "waggoner", the Anglicized form of Waghenaer's surname.[81][82][83][84][85][86][87]

Concept of atlas (1595)[edit]

Blaeu's world map, originally prepared by Joan Blaeu for his Atlas Maior, published in the first book of the Atlas Van Loon (1664).

Gerardus Mercator was the first to coin the word atlas to describe a bound collection of maps through his own collection entitled "Atlas sive Cosmographicae meditationes de fabrica mvndi et fabricati figvra". He coined this name after the Greek god who held the earth in his arms.[80][88]

Telescope (optical telescope) (1608)[edit]

The first historical records of a telescope appear in patents filed 1608 by Hans Lippershey and Jacob Metius.[398][399][400][401][402][403][404][405] A description of Lippershey's instrument quickly reached Galileo Galilei, who created an improved version in 1609, with which he made the observations found in his Sidereus Nuncius of 1610.

Huygens eyepiece (first compound eyepiece) (1670s)

Discovery of Microorganisms (1670s)

Leyden jar (first practical capacitor) (1745–1746)

Phase contrast microscope (1933)

First systematic charting of the far southern skies (southern constellations) (1595–97)[edit]

The Dutch were the first to systematically observe and map (chart) the largely unknown far southern skies in the late 16th century. Among the IAU's 88 modern constellations, there are 15 Dutch-created constellations, including 12 southern constellations.

The Dutch Republic's explorers and cartographers like Pieter Dirkszoon Keyser, Frederick de Houtman, Petrus Plancius and Jodocus Hondius were the pioneers in first systematic charting/mapping of largely unknown southern hemisphere skies in the late 16th century.

The constellations around the South Pole were not observable from north of the equator, by Babylonians, Greeks, Chinese or Arabs. The modern constellations in this region were defined during the Age of Exploration, notably by Dutch navigators Pieter Dirkszoon Keyser and Frederick de Houtman at the end of sixteenth century. These twelve Dutch-created southern constellations represented flora and fauna of the East Indies and Madagascar. They were depicted by Johann Bayer in his star atlas Uranometria of 1603.[89] Several more were created by Nicolas Louis de Lacaille in his star catalogue, published in 1756.[90] By the end of the Ming Dynasty, Xu Guangqi introduced 23 asterisms of the southern sky based on the knowledge of western star charts.[91] These asterisms have since been incorporated into the traditional Chinese star maps. Among the IAU's 88 modern constellations, there are 15 Dutch-created constellations (including Apus, Camelopardalis, Chamaeleon, Columba, Dorado, Grus, Hydrus, Indus, Monoceros, Musca, Pavo, Phoenix, Triangulum Australe, Tucana and Volans).

12 southern constellations (1597–1598)[edit]

Plancius defined 12 constellations created by Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman.[533][534][535][536][537][538][539]

Apus is a faint constellation in the southern sky, first defined in the late 16th century. Its name means "no feet" in Greek, and it represents a bird-of-paradise (once believed to lack feet). It first appeared on a 35 cm diameter celestial globe published in 1597 (or 1598) in Amsterdam by Plancius with Jodocus Hondius.

Chamaeleon is named after the chameleon, a kind of lizard.

Dorado is now one of the 88 modern constellations. Dorado has been represented historically as a dolphinfish and a swordfish.

Grus is Latin for the crane, a species of bird. The stars that form Grus were originally considered part of Piscis Austrinus (the southern fish).

Hydrus' name means "male water snake".

Indus represents an Indian, a word that could refer at the time to any native of Asia or the Americas.

Musca is one of the minor southern constellations. It first appeared on a 35-cm diameter celestial globe published in 1597 (or 1598) in Amsterdam by Plancius and Hondius. The first depiction of this constellation in a celestial atlas was in Johann Bayer's Uranometria of 1603.

Pavo is Latin for peacock.

Phoenix is a minor southern constellation, named after the mythical phoenix. It was the largest of the twelve.

Triangulum Australe is Latin for "the southern triangle", which distinguishes it from Triangulum in the northern sky and is derived from the almost equilateral pattern of its three brightest stars. It was first depicted on a celestial globe as Triangulus Antarcticus by Plancius in 1589, and later with more accuracy and its current name by Johann Bayer in his 1603 Uranometria.

Tucana is Latin for the toucan, a South American bird.

Volans represents a flying fish; its name is a shortened form of its original name, Piscis Volans.

Saturn

In 1655, Huygens became the first person to suggest that Saturn was surrounded by a ring, after Galileo's much less advanced telescope had failed to show rings. Galileo had reported the anomaly as possibly 3 planets instead of one.

In 1655, using a 50 power refracting telescope that he designed himself, Huygens discovered the first of Saturn's moons, Titan.

Galactic halo (1924)[edit]

In 1924, Dutch astronomer Jan Oort discovered the galactic halo, a group of stars orbiting the Milky Way but outside the main disk.

Discovery of evidence for galactic rotation (1904)[edit]

In 1904, studying the proper motions of stars, Dutch astronomer Jacobus Kapteyn reported that these were not random, as it was believed in that time; stars could be divided into two streams, moving in nearly opposite directions. It was later realized that Kapteyn's data had been the first evidence of the rotation of our Galaxy, which ultimately led to the finding of galactic rotation by Bertil Lindblad and Jan Oort.

Evidence of dark matter (1932)[edit]

In 1932, Dutch astronomer Jan Oort became the first person to discover evidence of dark matter. Oort proposed the substance after measuring the motions of nearby stars in the Milky Way relative to the galactic plane. He found that the mass of the galactic plane must be more than the mass of the material that can be seen. A year later (1933), Fritz Zwicky examined the dynamics of clusters of galaxies and found their movements similarly perplexing.

Discovery of methane in the atmosphere of Titan (1944)[edit]

The first formal proof of the existence of an atmosphere around Titan came in 1944, when Gerald Kuiper observed Titan with the new McDonald 82-inch (2.1 m) telescope and discovered spectral signatures on Titan at wavelengths longer than 0.6 μm (micrometers), among which he identified two absorption bands of methane at 6190 and 7250 Å (Kuiper1944). This discovery was significant not only because it requires a dense atmosphere with a significant fraction of methane, but also because the atmosphere needs to be chemically evolved, since methane requires hydrogen in the presence of carbon, and molecular and atomic hydrogen would have escaped from Titan's weak gravitational field since the formation of the solar system.[540]

Discovery of carbon dioxide in the atmosphere of Mars (1947)[edit]

Using infrared spectrometry, in 1947 the Dutch-American astronomer Gerard Kuiper detected carbon dioxide in the Martian atmosphere, a discovery of biological significance because it is a principal gas in the process of photosynthesis (see also: History of Mars observation). He was able to estimate that the amount of carbon dioxide over a given area of the surface is double that on the Earth.

Miranda (Uranus's moon) (1948)[edit]

Miranda is the smallest and innermost of Uranus's five major moons. It was discovered by Gerard Kuiper on 16 February 1948 at McDonald Observatory.

Nereid (Neptune's moon) (1949)[edit]

Nereid, also known as Neptune II, is the third-largest moon of Neptune and was its second moon to be discovered, on 1 May 1949, by Gerard Kuiper, on photographic plates taken with the 82-inch telescope at McDonald Observatory.

Oort cloud (1950)[edit]

The Oort cloud or Öpik–Oort cloud, named after Dutch astronomer Jan Oort and Estonian astronomer Ernst Öpik, is a spherical cloud of predominantly icy planetesimals believed to surround the Sun at a distance of up to 50,000 AU (0.8 ly). Further evidence for the existence of the Kuiper belt emerged from the study of comets. That comets have finite lifespans has been known for some time. As they approach the Sun, its heat causes their volatile surfaces to sublimate into space, gradually evaporating them. In order for comets to continue to be visible over the age of the Solar System, they must be replenished frequently.[541] One such area of replenishment is the Oort cloud, a spherical swarm of comets extending beyond 50,000 AU from the Sun first hypothesised by Dutch astronomer Jan Oort in 1950.[542] The Oort cloud is believed to be the point of origin of long-period comets, which are those, like Hale–Bopp, with orbits lasting thousands of years.

Kuiper belt (1951)[edit]

The Kuiper belt was named after Dutch-American astronomer Gerard Kuiper, regarded by many as the father of modern planetary science, though his role in hypothesising it has been heavily contested. In 1951, he proposed the existence of what is now called the Kuiper Belt, a disk-shaped region of minor planets outside the orbit of Neptune, which also is a source of short-period comets.

Continental drift hypothesis (1596)[edit]

The speculation that continents might have 'drifted' was first put forward by Abraham Ortelius in 1596. The concept was independently and more fully developed by Alfred Wegener in 1912. Because Wegener's publications were widely available in German and English and because he adduced geological support for the idea, he is credited by most geologists as the first to recognize the possibility of continental drift. During the 1960s geophysical and geological evidence for seafloor spreading at mid-oceanic ridges established continental drift as the standard theory or continental origin and an ongoing global mechanism.

Devotio Moderna (1370s–1390s)[edit]

Devotio Moderna, or Modern Devotion, was a movement for religious reform, calling for apostolic renewal through the rediscovery of genuine pious practices such as humility, obedience and simplicity of life. It began in the late fourteenth-century, largely through the work of Gerard Groote, and flourished in the Low Countries and Germany in the fifteenth century, but came to an end with the Protestant Reformation. Gerard Groote, father of the movement, founded the Brethren of the Common Life; after his death, disciples established a house of Augustinian Canons at Windesheim (near Zwolle, Overijssel). These two communities became the principal exponents of Devotio Moderna. Martin Luther studied under the Brethren of the Common Life at Magdeburg before going on to the University of Erfurt. Another famous member of the Brethren of the Common Life was Desiderius Erasmus of Rotterdam.

Devotio Moderna, an undogmatic form of piety which some historians have argued helped to pave the road for the Protestant Reformation, is most known today through its influence on Thomas à Kempis, the author of The Imitation of Christ a book which proved highly influential for centuries.

First synagogue to be established in the (Americas) New World (1636)[edit]

The first synagogue of the New World, Kahal Zur Israel Synagogue, is founded in Recife, Brazil by the Dutch Jews. The Kahal Zur Israel Synagogue in Recife, Brazil, erected in 1636, was the first synagogue erected in the Americas. Its foundations have been recently discovered, and the 20th-century buildings on the site have been altered to resemble a 17th-century Dutch synagogue.[396]

First Jewish congregation to be established in (the United States) North America (1654)[edit]

Congregation Shearith Israel, the Spanish and Portuguese Synagogue in the City of New Amsterdam, was founded in 1654, the first Jewish congregation to be established in North America. Its founders were twenty-three Jews, mostly of Spanish and Portuguese origin, who had been living in Recife, Brazil. When the Portuguese defeated the Dutch for control of Recife, and brought with them the Inquisition, the Jews of that area left. Some returned to Amsterdam, where they had originated. Others went to places in the Caribbean such as St. Thomas, Jamaica, Surinam and Curaçao, where they founded sister Sephardic congregations. One group of twenty-three Jews, after a series of unexpected events, landed in New Amsterdam. After being initially rebuffed by anti-Semitic Governor Peter Stuyvesant, Jews were given official permission to settle in the colony in 1655. These pioneers fought for their rights and won permission to remain. This marks the founding of the Congregation Shearith Israel.[397]

Pendulum clock (first high-precision clock) (1656)

Concept of the standardization of the temperature scale (1665)

Spiral-hairspring watch (first high-precision watch) (1675)

Mercury thermometer (first practical, accurate thermometer) (1714)

Snellen chart (1862)

Schilt photometer (1922)[edit]

In 1922, Dutch astronomer Jan Schilt invented the Schilt photometer, a device that measures the light output of stars and, indirectly, their distances.

Clinical electrocardiography (first diagnostic electrocardiogram) (1902)

First European blood bank (1940)

Rotating drum dialysis machine (first practical artificial kidney) (1943

Artificial heart (1957)

Modern model of sea power (1585–1688)[edit]

The Dutch Republic has been considered by many political and military historians as the first modern (global) sea power.

Submarine snorkel (1939)

Metronome (1812)

Fokker organ (1950)

Chemicals and materials[edit]

Bow dye (1630)[edit]

While making a coloured liquid for a thermometer, Cornelis Drebbel dropped a flask of Aqua regia on a tin window sill, and discovered that stannous chloride makes the color of carmine much brighter and more durable. Though Drebbel himself never made much from his work, his daughters Anna and Catharina and his sons-in-law Abraham and Johannes Sibertus Kuffler set up a successful dye works. One was set up in 1643 in Bow, London, and the resulting color was called bow dye.

Dyneema (1979)[edit]

Dutch chemical company DSM invented and patented the Dyneema in 1979. Dyneema fibres have been in commercial production since 1990 at their plant at Heerlen. These fibers are manufactured by means of a gel-spinning process that combines extreme strength with incredible softness. Dyneema fibres, based on ultra-high-molecular-weight polyethylene (UHMWPE), is used in many applications in markets such as life protection, shipping, fishing, offshore, sailing, medical and textiles.

Communication and multimedia[edit]

Compact cassette (1962)[edit]

Compact Cassette

In 1962 Philips invented the compact audio cassette medium for audio storage, introducing it in Europe in August 1963 (at the Berlin Radio Show) and in the United States (under the Norelco brand) in November 1964, with the trademark name Compact Cassette.[92][93][94][95][96]

Laserdisc (1969)[edit]

Laserdisc technology, using a transparent disc,[97] was invented by David Paul Gregg in 1958 (and patented in 1961 and 1990).[98] By 1969, Philips developed a videodisc in reflective mode, which has great advantages over the transparent mode. MCA and Philips decided to join forces. They first publicly demonstrated the videodisc in 1972. Laserdisc entered the market in Atlanta, on 15 December 1978, two years after the VHS VCR and four years before the CD, which is based on Laserdisc technology. Philips produced the players and MCA made the discs.

Compact disc (1979)[edit]

Compact Disc

The compact disc was jointly developed by Philips (Joop Sinjou) and Sony (Toshitada Doi). In the early 1970s, Philips' researchers started experiments with "audio-only" optical discs, and at the end of the 1970s, Philips, Sony, and other companies presented prototypes of digital audio discs.

Bluetooth (1990s)[edit]

Bluetooth, a low-energy, peer-to-peer wireless technology was originally developed by Dutch electrical engineer Jaap Haartsen and Swedish engineer Sven Mattisson in the 1990s, working at Ericsson in Lund, Sweden. It became a global standard of short distance wireless connection.

Wi-fi (1990s)[edit]

In 1991, NCR Corporation/AT&T Corporation invented the precursor to 802.11 in Nieuwegein. Dutch electrical engineer Vic Hayes chaired IEEE 802.11 committee for 10 years, which was set up in 1990 to establish a wireless networking standard. He has been called the father of Wi-Fi (the brand name for products using IEEE 802.11 standards) for his work on IEEE 802.11 (802.11a & 802.11b) standard in 1997.

DVD (1995)[edit]

The DVD optical disc storage format was invented and developed by Philips and Sony in 1995.

Ambilight (2002)[edit]

Ambilight, short for "ambient lighting", is a lighting system for televisions developed by Philips in 2002.

Blu-ray (2006)[edit]

Philips and Sony in 1997 and 2006 respectively, launched the Blu-ray video recording/playback standard.

Computer science and information technology[edit]

Dijkstra's algorithm (1956)[edit]

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree. Dijkstra's algorithm is so powerful that it not only finds the shortest path from a chosen source to a given destination, it finds all of the shortest paths from the source to all destinations. This algorithm is often used in routing and as a subroutine in other graph algorithms.

Dijkstra's algorithm is considered as one of the most popular algorithms in computer science. It is also widely used in the fields of artificial intelligence, operational research/operations research, network routing, network analysis, and transportation engineering.

Foundations of distributed computing (1960s)[edit]

Through his fundamental contributions Edsger Dijkstra helped shape the field of computer science. His groundbreaking contributions ranged from the engineering side of computer science to the theoretical one and covered several areas including compiler construction, operating systems, distributed systems, sequential and concurrent programming, software engineering, and graph algorithms. Many of his papers, often just a few pages long, are the source of whole new research areas. Several concepts that are now completely standard in computer science were first identified by Dijkstra and/or bear names coined by him.[99][100]

Edsger Dijkstra's foundational work on concurrency, semaphores, mutual exclusion, deadlock, finding shortest paths in graphs, fault-tolerance, self-stabilization, among many other contributions comprises many of the pillars upon which the field of distributed computing is built. The Edsger W. Dijkstra Prize in Distributed Computing (sponsored jointly by the ACM Symposium on Principles of Distributed Computing and the EATCS International Symposium on Distributed Computing) is given for outstanding papers on the principles of distributed computing, whose significance and impact on the theory and/or practice of distributed computing has been evident for at least a decade.

Foundations of concurrent programming (1960s)[edit]

The academic study of concurrent programming (concurrent algorithms in particular) started in the 1960s, with Edsger Dijkstra (1965) credited with being the first paper in this field, identifying and solving mutual exclusion.[101] A pioneer in the field of concurrent computing, Per Brinch Hansen considers Dijkstra's Cooperating Sequential Processes (1965) to be the first classic paper in concurrent programming. As Brinch Hansen notes: ‘Here Dijkstra lays the conceptual foundation for abstract concurrent programming.’[102]

Foundations of software engineering (1960s)[edit]

Computer programming in the 1950s to 1960s was not recognized as an academic discipline and unlike physics there were no theoretical concepts or coding systems. Dijkstra was one of the moving forces behind the acceptance of computer programming as a scientific discipline. In 1968, computer programming was in a state of crisis. Dijkstra was one of a small group of academics and industrial programmers who advocated a new programming style to improve the quality of programs. Dijkstra coined the phrase "structured programming" and during the 1970s this became the new programming orthodoxy.[103][104][105][106][107] As Bertrand Meyer remarked: "The revolution in views of programming started by Dijkstra's iconoclasm led to a movement known as structured programming, which advocated a systematic, rational approach to program construction. Structured programming is the basis for all that has been done since in programming methodology, including object-oriented programming."[108]

Dijkstra's ideas about structured programming helped lay the foundations for the birth and development of the professional discipline of software engineering, enabling programmers to organize and manage increasingly complex software projects.[109][110]

Shunting-yard algorithm (1960)[edit]

In computer science, the shunting-yard algorithm is a method for parsing mathematical expressions specified in infix notation. It can be used to produce output in Reverse Polish notation (RPN) or as an abstract syntax tree (AST). The algorithm was invented by Edsger Dijkstra and named the "shunting yard" algorithm because its operation resembles that of a railroad shunting yard. Dijkstra first described the Shunting Yard Algorithm in the Mathematisch Centrum report.

Schoonschip (early computer algebra system) (1963)[edit]

In 1963/64, during an extended stay at SLAC, Dutch theoretical physicist Martinus Veltman designed the computer program Schoonschip for symbolic manipulation of mathematical equations, which is now considered the very first computer algebra system.

Mutual exclusion (mutex) (1965)[edit]

In computer science, mutual exclusion refers to the requirement of ensuring that no two concurrent processes are in their critical section at the same time; it is a basic requirement in concurrency control, to prevent race conditions. The requirement of mutual exclusion was first identified and solved by Edsger W. Dijkstra in his seminal 1965 paper titled Solution of a problem in concurrent programming control,[111][112] and is credited as the first topic in the study of concurrent algorithms.[101]

Semaphore (programming) (1965)[edit]

The semaphore concept was invented by Dijkstra in 1965 and the concept has found widespread use in a variety of operating systems.

Banker's algorithm (deadlock prevention algorithm) (1965)[edit]

The Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes an "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue. The algorithm was developed in the design process for the THE multiprogramming system and originally described (in Dutch) in EWD108.[114] The name is by analogy with the way that bankers account for liquidity constraints.

Structured programming (1968)[edit]

In 1968, computer programming was in a state of crisis. Dijkstra was one of a small group of academics and industrial programmers who advocated a new programming style to improve the quality of programs. Dijkstra coined the phrase "structured programming" and during the 1970s this became the new programming orthodoxy. Structured programming is often regarded as “goto-less programming”. But as Bertrand Meyer notes, “As the first book on the topic [Structured Programming by Dijkstra, Dahl, and Hoare] shows, structured programming is about much more than control structures and the goto. Its principal message is that programming should be considered a scientific discipline based on mathematical rigor.”[119] As a programming paradigm, structured programming – especially in the 1970s and 1980s – significantly influenced the birth of many modern programming languages such as Pascal,[120][121] C, Modula-2, and Ada.[122] The Fortran 77 version which incorporates the concepts of structured programming, was released in 1978. The C++ language was a considerably extended and enhanced version of the popular structured programming language C (see also: list of C-based programming languages). Since C++ was developed from a more traditional structured language, it is a 'hybrid language', rather than a pure object-oriented programming language.[123]

Python (programming language) (1989)[edit]

Python is a widely used general-purpose, high-level programming language.[136][137] Its design philosophy emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be possible in languages such as C++ or Java.[138][139] The language provides constructs intended to enable clear programs on both a small and large scale. Python supports multiple programming paradigms, including object-oriented, imperative and functional programming or procedural styles. It features a dynamic type system and automatic memory management and has a large and comprehensive standard library.

Python was conceived in the late 1980s and its implementation was started in December 1989 by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language (itself inspired by SETL) capable of exception handling and interfacing with the Amoeba operating system. Van Rossum is Python's principal author, and his continuing central role in deciding the direction of Python is reflected in the title given to him by the Python community, benevolent dictator for life (BDFL).

Blender is a professional free and open-source 3D computer graphics software product used for creating animated films, visual effects, art, 3D printed models, interactive 3D applications and video games. Blender's features include 3D modeling, UV unwrapping, texturing, raster graphics editing, rigging and skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting, animating, match moving, camera tracking, rendering, video editing and compositing. Alongside the modelling features it also has an integrated game engine. Blender has been successfully used in the media industry in several parts of the world including Argentina, Australia, Belgium, Brazil, Russia, Sweden, and the United States.

The Dutch animation studio Neo Geo and Not a Number Technologies (NaN) developed Blender as an in-house application, with the primary author being Ton Roosendaal. The name Blender was inspired by a song by Yello, from the album Baby.[140]

Doughnut (17th century)[edit]

Holstein Friesian cattle (2nd century BC)

Gin (jenever) (1650)

Cocoa powder (foundations of modern chocolate industry) (1828)

Orange-coloured carrot (16th century)

Belle de Boskoop (apple)

Karmijn de Sonnaville (apple)

Elstar (apple) (1950s)

Dutch-process chocolate (1828)

Neostoicism (1580s)[edit]

Neostoicism was a syncretic philosophical movement, joining Stoicism and Christianity. Neostoicism was founded by Dutch-Flemish humanist Justus Lipsius, who in 1584 presented its rules, expounded in his book De Constantia (On Constancy), as a dialogue between Lipsius and his friend Charles de Langhe. The eleven years (1579–1590) that Lipsius spent in Leiden (Leiden University) were the period of his greatest productivity. It was during this time that he wrote a series of works designed to revive ancient Stoicism in a form that would be compatible with Christianity. The most famous of these is De Constantia (1584). Neostoicism had a direct influence on many seventeenth and eighteenth-century writers including Montesquieu, Bossuet, Francis Bacon, Joseph Hall, Francisco de Quevedo and Juan de Vera y Figueroa.

Modern rationalism (1630s–1670s)[edit]

The rise of modern rationalism in the Dutch Republic, had a profound influence on the 17th-century philosophy. Descartes is often considered to be the first of the modern rationalists. Descartes himself had lived in the Dutch Republic for some twenty years (1628–1649) and served for a while in the army of the Dutch military leader Prince Maurice of Orange-Nassau. The Dutch Republic was the first country in which Descartes' rationalistic philosophy (Cartesianism) succeeded in replacing Aristotelianism as the academic orthodoxy. Fritz Berolzheimer considers Hugo Grotius the Descartes of legal philosophy and notes Grotian rationalism's influence on the 17th-century jurisprudence: "As the Cartesian "cogito ergo sum" became the point of departure of rationalistic philosophy, so the establishment of government and law upon reason made Hugo Grotius the founder of an independent and purely rationalistic system of natural law." In the late 1650s Leiden was a place where one could study Cartesian philosophy. Sometime between 1656 and 1661 it appears that Spinoza did some formal study of philosophy at the University of Leiden. Philosophy of Spinoza (Spinozism) was an systematic answer to Descartes' famous dualist theory that the body and spirit are separate.

Modern pantheism (1670s)[edit]

Pantheism was popularized in the modern era as both a theology and philosophy based on the work of the 17th-century Dutch Jew philosopher Baruch Spinoza, whose Ethics was an answer to Descartes' famous dualist theory that the body and spirit are separate. Spinoza is regarded as the chief source of modern pantheism. Spinoza held that the two are the same, and this monism is a fundamental quality of his philosophy. He was described as a "God-intoxicated man," and used the word God to describe the unity of all substance. Although the term pantheism was not coined until after his death, Spinoza is regarded as its most celebrated advocate.

Early liberalism (foundations of liberalism) (17th century)[edit]

European liberalism, Isaiah Berlin wrote, "wears the appearance of a single coherent movement, little altered during almost three centuries, founded upon relatively simple foundations, laid by Locke or Grotius or even Spinoza; stretching back to Erasmus and Montaigne..."[386]

As Bertrand Russell noted in his A History of Western Philosophy (1945): "Descartes lived in Holland for twenty years (1629–49), except for a few brief visits to France and one to England, all on business. It is impossible to exaggerate the importance of Holland in the seventeenth century, as the one country where there was freedom of speculation. Hobbes had to have his books printed there; Locke took refuge there during the five worst years of reaction in England before 1688; Bayle (of the Dictionary) found it necessary to live there; and Spinoza would hardly have been allowed to do his work in any other country."[33] Russell described early liberalism in Europe: "Early liberalism was a product of England and Holland, and had certain well-marked characteristics. It stood for religious toleration; it was Protestant, but of a latitudinarian rather than of a fanatical kind; it regarded the wars of religion as silly..."[33]

As Russell Shorto states: “Liberalism has many meanings, but in its classical sense it is a philosophy based on individual freedom. History has long taught that our modern sensibility comes from the eighteenth century Enlightenment. In recent decades, historians have seen the Dutch Enlightenment of the seventeenth century as the root of the wider Enlightenment.[386][387][388][389] And at the center of this sits the city of Amsterdam.”[390] Amsterdam, to Shorto, was not only the first city in Europe to develop the cultural and political foundations of what we now call liberalism – a society focused on the concerns and comforts of individuals, run by individuals acting together, and tolerant of religion, ethnicity, or other differences – but also an exporter of these beliefs to the rest of Europe and the New World.[391][392][393][394]

Cartesianism (1630s–1640s)[edit]

If Descartes is still considered the father of modern philosophy, Dutch Republic can be called its cradle. Cartesianism is the name given to the philosophical doctrine of René Descartes. Descartes is often regarded as the first thinker to emphasize the use of reason to develop the natural sciences. Cartesianism had been controversial for several years before 1656. Descartes himself had lived in the Dutch Republic for some twenty years (1628–1649). Descartes served for a while in the army of the Dutch military leader Prince Maurice of Orange-Nassau, and developed a fascination for practical technology. In the 1630s, while staying in the Dutch city Deventer, Descartes worked on a text which became published as Traite' de l'Homme (1664). Throughout his writing, he used words such as clock, automaton, and self – moving machine as interchangeable constructs. He postulated an account of the physical world that was thoroughly materialistic. His mechanical view of nature replaced the organism model which had been popular since the Renaissance.[378] His Discours de la méthode (1637) was originally published at Leiden, and his Principia philosophiae (1644) appeared from the presses at Amsterdam. In the 1630s and 1640s, Descartes's ideas gained a foothold at the Dutch universities.[395]

Spinozism (1660s–1670s)[edit]

Spinozism is the monist philosophical system of the Dutch-Jewish philosopher Baruch Spinoza which defines "God" as a singular self-subsistent substance, with both matter and thought as its attributes.

Affect (philosophy) (1670s)[edit]

Affect (affectus or adfectus in Latin) is a concept used in the philosophy of Spinoza and elaborated by Henri Bergson, Gilles Deleuze and Félix Guattari that emphasizes bodily experience. The term "affect" is central to what became known as the "affective turn" in the humanities and social sciences.

Mandeville's paradox (1714)[edit]

Mandeville's paradox is named after Bernard Mandeville, who shows that actions which may be qualified as vicious with regard to individuals have benefits for society as a whole. This is already clear from the subtitle of his most famous work, The Fable of The Bees: ‘Private Vices, Publick Benefits’. He states that "Fraud, Luxury, and Pride must live; Whilst we the Benefits receive.") (The Fable of the Bees, ‘The Moral’).

Mathematical intuitionism (1907–1908)[edit]

Mathematical intuitionism was founded by the Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality. That is, logic and mathematics are not considered analytic activities wherein deep properties of objective reality are revealed and applied, but are instead considered the application of internally consistent methods used to realize more complex mental constructs, regardless of their possible independent existence in an objective reality.

First pound lock in Europe (1373

The Netherlands revived the construction of canals during the 13th–14th century that had generally been discontinued since the fall of the Roman Empire. They also contributed in the development of canal construction technology, such as introducing the first flash locks in Europe. The first pound lock in Europe was built by the Dutch in 1373 at Vreeswijk, where a canal from Utrecht joins the river Lek.[451]

Thermostat (automatic temperature regulator) (1620s)

Magic lantern (first practical image projector; the forerunner of modern slide projector) (1659

Fire hose (1673)

Gunpowder engine (first practical rudimentary internal combustion piston engine) (1678

Huygens' gunpowder engine is often considered as the earliest recognizable forerunner of modern internal combustion engines.

A gunpowder engine, also known as an explosion engine or Huygens' engine, is a type of internal combustion engine using gunpowder as its fuel. It was considered essentially as the first rudimentary internal combustion piston engine.[467][468][469][470][471][472][473] The concept was first explored during the 17th century, most notably by the Dutch scientist Christiaan Huygens.

Meat slicer (1898)

Traffic enforcement camera (1958|

Variomatic (1958)

Red light camera (1965)

Clap skate (1980)

Stochastic cooling (1968)[edit]

Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emission of particle beams. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from other particles in the beam. This technique was invented and applied at the Intersecting Storage Rings, and later the Super Proton Synchrotron, at CERN in Geneva, Switzerland by Dutch physicist Simon van der Meer. By increasing the particle density to close to the required energy, this technique improved the beam quality and, inter alia, brought the discovery of W and Z bosons within reach.

Wind-powered sawmill (1592

Yacht (1580s

Fluyt (16th century)

Schooner (prototype) (17th century

Land yacht (1600)

First verified practical (navigable) submarine (1620)

First ever car equipped with a six-cylinder engine, along with four-wheel drive (1903)

Foundations of modern reproductive biology (1660s –1670s)[edit]

Function of the Fallopian tubes (1660s)[edit]

Development of ovarian follicles (1672)[edit]

Foundations of microbiology (discovery of microorganisms) (1670s)

Photosynthesis (1779)

Plant respiration (1779)

Foundations of virology (1898)

Chemistry of photosynthesis (1931)

Foundations of modern ethology (Tinbergen's four questions) (1930s)

Concept of gas (1600s)

Foundations of stereochemistry (1874

Foundations of modern physical chemistry (1880s)

Concept of pangene/gene (1889)[edit]

In 1889, Dutch botanist Hugo de Vries published his book Intracellular Pangenesis, in which he postulated that different characters have different hereditary carriers, based on a modified version of Charles Darwin's theory of Pangenesis of 1868. He specifically postulated that inheritance of specific traits in organisms comes in particles. He called these units pangenes, a term shortened in 1909 to genes by Danish botanist Wilhelm Johannsen.

Rediscovery the laws of inheritance (1900)[edit]

1900 marked the "rediscovery of Mendelian genetics". The significance of Gregor Mendel's work was not understood until early in the twentieth century, after his death, when his research was re-discovered by Hugo de Vries, Carl Correns and Erich von Tschermak, who were working on similar problems.[580] They were unaware of Mendel's work. They worked independently on different plant hybrids, and came to Mendel's conclusions about the rules of inheritance.

Analytic geometry (1637)

Proof of the Brouwer fixed-point theorem (1911)

Proof of the hairy ball theorem (1912)

Proof of the law of equilibrium on an inclined plane (1586)

Centripetal force (1659)

Centrifugal force (1659)

Formula for the period of mathematical pendulum (1659

Coupled oscillation (spontaneous synchronization) (1665)

Foundations of modern (human) anatomy (1543)

Blood cells (1658)

Red blood cells (1658)

Micro-organisms (1670s)

Spirillum (first isolated sulfate-reducing bacteria) (1895)

Concept of virus (1898)

Enrichment culture (1904)[edit]

Beijerinck is credited with developing the first enrichment culture, a fundamental method of studying microbes from the environment.

Foundations of physical optics / wave optics (wave theory of light) (1678)

Polarization of light (1678)[edit]

In 1678, Huygens discovered the polarization of light by double refraction in calcite.[635][636][637]

Huygens' principle (concepts of the wavefront and wavelet) (1690)

Buys Ballot's law (1857)

Foundations of molecular physics (1873)

Van der Waals equation of state (1873)

Van der Waals forces (1873)

Van der Waals radius (1873)

Law of corresponding states (1880)

Lorentz force law (1892)

Superconductivity (1911)

Einstein–de Haas effect (1910s)

Debye model (1912)|

Electron spin (1925)

Solidification of helium (1926)

Holographic principle (1993)

Discoverys

Orange Islands (1594)

Svalbard (1596)

Falkland Islands/Sebald Islands (1600)

Pennefather River, Northern Australia (1606)

First charting of Manhattan, New York (1609)

Hudson Valley (1609)

Southern Australia coast (1627)

Western Australia (1629)

Tasmania and the surrounding islands (1642)

New Zealand and Fiji (1642)

Tongatapu and Haʻapai (Tonga) (1643)

Easter Island and Samoa (1722)

First major scientific expedition to Brazil (1637–1644)

First ethnographic descriptions of New Netherland and North American Indians (1641–1653)

First non-Asian first-hand account of Korea (1653–1666)