👼EL☀️DAVI👼Jun 16, 2017, 3:43:42 AM

The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The next number is found by adding up the two numbers before it.

- The 2 is found by adding the two numbers before it (1+1)
- The 3 is found by adding the two numbers before it (1+2),
- And the 5 is (2+3),
- and so on!

Example: the next number in the sequence above is 21+34 = **55**

It is that simple!

Here is a longer list:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...

*Can you figure out the next few numbers?*

When we make squares with those widths, we get a nice spiral:

Do you see how the squares fit neatly together? For example 5 and 8 make 13, 8 and 13 make 21, and so on.

The Fibonacci Sequence can be written as a "Rule" (see Sequences and Series).

First, the terms are numbered from 0 onwards like this:

So term number 6 is called x_{6} (which equals 8).

Example: the **8th** term is the **7th** term plus the **6th** term:

x_{8} = x_{7} + x_{6}

So we can write the rule:

The Rule is **x _{n} = x_{n-1} + x_{n-2}**

where:

**x**is term number "n"_{n}**x**is the previous term (n-1)_{n-1}**x**is the term before that (n-2)_{n-2}

Example: term 9 is calculated like this:

xAnd here is a surprise. When we take any two successive *(one after the other)* Fibonacci Numbers, their ratio is very close to the Golden Ratio"**φ**" which is approximately **1.618034...**

In fact, the bigger the pair of Fibonacci Numbers, the closer the approximation. Let us try a few:

A B B / A 2 3 1.5 3 5 1.666666666... 5 8 1.6 8 13 1.625 ... ... ... 144 233 1.618055556... 233 377 1.618025751... ... ... ...Note: this also works when we pick two **random** whole numbers to begin the sequence, such as 192 and 16 (we get the sequence *192, 16, 208, 224, 432, 656, 1088, 1744, 2832, 4576, 7408, 11984, 19392, 31376, ...*):

It takes longer to get good values, but it shows that not just the Fibonacci Sequence can do this!

And even more surprising is that we can **calculate any Fibonacci Number** using the Golden Ratio:

The answer always comes out **as a whole number**, exactly equal to the addition of the previous two terms.

Example:

When I used a calculator on this (only entering the Golden Ratio to 6 decimal places) I got the answer 8.00000033. A more accurate calculation would be closer to 8.

Try it for yourself!

Here is the Fibonacci sequence again:

There is an interesting pattern:

- Look at the number
**x**. Every_{3}= 2**3**rd number is a multiple of**2**(2, 8, 34, 144, 610, ...) - Look at the number
**x**. Every_{4}= 3**4**th number is a multiple of**3**(3, 21, 144, ...) - Look at the number
**x**. Every_{5}= 5**5**th number is a multiple of**5**(5, 55, 610, ...)

And so on (every **n**th number is a multiple of** x _{n}**).

Notice the first few digits (0,1,1,2,3,5) are the Fibonacci sequence?

In a way they **all** are, except multiple digit numbers (13, 21, etc) **overlap**, like this:

The sequence works below zero also, like this:

*(Prove to yourself that each number is found by adding up the two numbers before it!)*

In fact the sequence below zero has the same numbers as the sequence above zero, except they follow a +-+- ... pattern. It can be written like this:

**x**_{−n} = (−1)^{n+1} **x**_{n}

Which says that term "-n" is equal to (−1)^{n+1}* ^{ }*times term "n", and the value (−1)

Fibonacci was not the first to know about the sequence, it was known in India hundreds of years before!

His real name was Leonardo Pisano Bogollo, and he lived between 1170 and 1250 in Italy.

"Fibonacci" was his nickname, which roughly means "Son of Bonacci".

As well as being famous for the Fibonacci Sequence, he helped spread Hindu-Arabic Numerals (like our present numbers 0,1,2,3,4,5,6,7,8,9) through Europe in place of Roman Numerals (I, II, III, IV, V, etc). That has saved us all a lot of trouble! Thank you Leonardo.