A new study using the Hubble Space Telescope suggests that we understand dark matter even less than we thought previously. The hypothesized matter is thought to exist based on the mass of galaxies, but has never been directly observed. Now, new research suggests that our predictions about how dark matter affects space-time might be way off. Hubble researchers used a technique called gravitational lensing, in which distant objects are observed by looking at the way light is bent by the gravity of closer objects, with the closer objects acting like a magnifying glass. This allowed them to spot areas that likely contain dark matter, which can be seen affecting the distortion of space-time even if it can't be seen directly. The finding that surprised the researchers was that even small amounts of dark matter in clusters created a gravitational lensing effect that was 10 times stronger than they had expected. This suggests there is something missing from our understanding of dark matter. "There's a feature of the real universe that we are simply not capturing in our current theoretical models," team members Priyamvada Natarajan of Yale University said in a statement. "This could signal a gap in our current understanding of the nature of dark matter and its properties, as these exquisite data have permitted us to probe the detailed distribution of dark matter on the smallest scales." https://www.sott.net/article/441337-Dark-matter-might-be-even-stranger-than-we-thought-according-to-Hubble